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SUMMARY

The distribution patterns of cancer metastasis depend on a sequence of steps
involving adhesion molecules and on mechanical and geometrical effects related
to blood circulation, but how much each of these two aspects contributes to the
metastatic spreadof a specific tumor is still unknown.Hereweaddress this question
by simulating cancer cell trajectories in a high-resolution humanoid model of global
blood circulation, including stochastic adhesion events, and comparing the results
with the location ofmetastasis recorded in thousands of human autopsies for seven
different solid tumors, including lung, prostate, pancreatic and colorectal cancers,
showing that on average 40% of the variation in the metastatic distribution can
be attributed to blood circulation. Our humanoid model of circulating tumor cells
allows us to predict the metastatic spread in specific realistic conditions and can
therefore guide precise therapeutic interventions to fight metastasis.

INTRODUCTION

Cancer is the second cause ofmortality worldwide, andmetastasis is themain reason for patient death. Themet-

astatic process is due to the spread of tumor cells through blood and/or lymphatic vessels and the capability of

cancer cells to colonize specific sites. Already in 1889 (Paget, 1889), Paget claimed thatmetastasis does not occur

by chance but only when tumor cells (the seeds) can adapt to a permissivemicroenvironment (the soil) of a given

organ, as with seeds needing a fertile soil to grow and flourish. This point of view is supported by a vast literature

(Fidler, 2003; Fokas et al., 2007). Later in 1929, Ewing stressed the importance for metastatic dissemination of

mechanical and geometrical factors resulting from the anatomical structure of the vascular system and the asso-

ciated hemodynamic flow (Ewing, 1919), a view also supported by experimental evidence (Weiss et al., 1980;

Weiss, 1992) and computational models (Scott et al., 2014; Poleszczuk et al., 2016). Although both mechanical

and seed-soil compatibility factors should play a role in the spread of metastasis (Chambers et al., 2002; Wirtz

et al., 2011), the relative weight of each factor for a given cancer type and target organ is unknown owing to

the lack of appropriate quantitative tools.

Here we build a high-resolution global blood circulation model of a humanoid male subject (Quarteroni, 2006;

Müller andToro, 2014;Blancoet al., 2014, 2015;Huanget al., 2018), including stochastic adhesionevents, to simu-

late the trajectories of circulating tumor cells (CTCs). Using the model, we estimate the colonization patterns of

CTCs at the different target organs. We compare the simulation results with a statistical analysis of thousands of

human autopsies reported in the literature (Abrams et al., 1950; Disibio and French, 2008; Bubendorf et al., 2000;

Budczies et al., 2015; Schlageter et al., 2016) for sevenprimary tumors: lung, colorectal, prostate, pancreatic, liver,

kidney, esophageal, and gastric cancers. The model allows one to estimate the contribution of geometrical and

flow factors to the spread of metastasis, providing an essential guidance to interpret experimental data.

RESULTS

We build an accurate network representation of arterial and venous circulatory systems starting from a full 3D

whole-body model obtained fromMRI images of a male subject taken at 2-mm resolution (BodyParts3D [Mitsu-

hashi et al., 2009]). From thismodel, weextract a set of 639 arterymeshes, 395 veinmeshes, and16organmeshes,

and, using graph inference algorithms, we obtain a network composed by 23,285 nodes and 23,804 edges, each

annotatedwith their radiusRand lengthL (seeFigure 1A).Amorphometric analysisof themodel is summarized in

FigureS1A illustrating thedecreaseof vessel radiusasa functionof thegenerationnumber (seeMethods section).

Blood flow patterns are then obtained by imposing flow rate conservation at each node and a pressure

boundary condition across the hearth. The pressure drop Dp across each vessel is proportional to the
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flow rate J according to the Hagen-Poiseuille equation (see Figure 1A and Methods for additional details).

From the solution of the hemodynamic flow equations, we compute flow distributions (Figure 1B) ensuring

that the fraction of blood flow reaching each organ and the results compare well with experimental data

(Figure 1C). Furthermore, the dependence of the arterial blood pressure on the vessel radius reported

in Figure S1B is in agreement with physiological measurements (Guyton and Hall, 1986).

In our model, CTC trajectories are computed assuming that cancer cells are randomly released from the primary

tumor and then follow theblood stream, randomlychoosing thedirection to takeat each intersectionwithaprob-

ability that is proportional to the relative flow in each branch. Cancer cells can exit the blood streamwith a prob-

ability that only depends on geometrical and hemodynamic factors as discussed in theModel section. Owing to

computational limitations,wedonot directlymodel the flow inside capillary bedsbutweestimate theprobability

to exit the blood stream from the typical geometry of capillary beds (see Figure S1C). In this way, themodel does

not consider specificmicroenvironmental seed-soil compatibility factors between cancer cells and target organs

but only the geometry of capillary beds, where adhesion and extravasation are expected to occur. Examples of

cancer cell trajectories released from the pancreas are reported in Figure 2A (see also Video S1).

Simulating the model, we collect a large set of cell trajectories starting from a predetermined set of primary tu-

mor sites P (i.e., lung, colon, prostate, pancreas, stomach, kidney, and liver) and determine the fraction of cells fc
whose trajectory ends at a specific target organO (includingbrain, liver, lungs, hearth, kidney, andpancreas).We

launch a total of N = 10,000 trajectories starting from each organ, let them flow along the circulatory system, and

wait until they eventually stop. In this way, we can infer the distribution of metastatic dissemination expected if

only flow and geometric factors were present. A summary of the simulated pattern is reported in Figure 2B,

showing the probability that a primary tumor P would metastasize at organ O.

Tocompareour numerical estimateswith realmetastatic disseminationpatterns, we collectdataonmetastasis dis-

tributions fromhumanautopsies reported in the literature (Abramsetal., 1950;DisibioandFrench,2008;Bubendorf

et al., 2000; Budczies et al., 2015; Schlageter et al., 2016).We restrict our analysis to studies originatingdirectly from

Figure 1. Computational Model of Global Arterial-Venous Circulation Reproduces Experimentally Measured

Blood Flow Distribution

(A) The circulation network is reconstructed from the meshes obtained from a 3D body scan. The blood flow is then

obtained by imposing flow conservation and the Hagen-Poiseuille equation. CTC trajectories follow the blood flow and

can attach to the vessel walls if they are within a distance d of them.

(B) Blood flow distribution obtained from the model.

(C) The fraction of blood reaching each organ obtained with the model is in good agreement with experimental data from

Williams and Leggett (1989).
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patient autopsies (Abramset al., 1950;Disibio andFrench, 2008; Bubendorf et al., 2000; Budczies et al., 2015; Schla-

geter et al., 2016), disregarding other studies inferring metastatic patterns frommedical records only (Chen et al.,

2009;Qiu et al., 2015; Riihimäki et al., 2018). A collectionof existingpublisheddata is summarized in Figures S2 and

S3. For each primary tumor P, we report the fraction of patients fp with metastasis in organ O. The data show that

there is a good consistency between the value of fp measured in different studies, taking into account expected

uncertainties due to the sample size in each study. Nevertheless, we observe variations among studies that could

be associated to a variety of factors intrinsic to each study, such as the location or the time atwhich dataweregath-

ered or the specific drug treatment of the patients. We generically refer these variations as ‘‘measurement errors.’’

In Figure 3, we report a collection of cross-correlation plots of the value of fc estimated from the model and

the corresponding value of fp measured from autopsies. The rationale behind this plot is that any variations

in themetastasis distributions due to geometrical and flow effects should be due to differences in the prob-

abilities that cancer cells reach the target organs. If these geometrical effects are prevalent, we should

observe a distinct correlation between fc and fp. Inspection of the results reported in Figure 2 shows that

most primary tumors display clear correlations between the fraction of simulated cancer cell trajectories

reaching the target organs and its effective metastatic colonization as measured by autopsies. In particular,

statistically significant correlations are found for lung, colorectal, prostate, pancreatic, and esophago-

gastric cancers, whereas no statistically significant correlations can be found for kidney and liver cancer.

Thepresenceof statistically significant correlations allowsusalso toestimatehowmuchof theobserved variations

in themetastaticdistribution isexplainedbyourmodel.Theremainingvariationsareduetoseed-soil compatibility

and to themeasurement errors discussed above. This information is summarized in Figure4A for differentprimary

tumors.Geometrical factors result tobeparticularly relevant in themetastatic spreadof lungcancer.AlthoughFig-

ure 4A is compiled from theperspectiveof theprimary tumor,wecan also take theperspectiveof the targetorgan

examining thevariations in themetastaticpatternswith respect to theprimary tumors.As shown inFigure4B, forall

the target organs considered, the variations inmetastasis can bemostly attributed to seed-soil compatibility, with

thepossibleexceptionof kidneymetastasis, showing a significantdependenceon the flowandgeometric factors.

DISCUSSION

In this paper, we have introduced a high-resolution model for the spread of CTCs through the circulatory

system and used it to estimate the contribution of blood flow to metastatic spread. Our model expands the

Figure 2. Model Simulations Allow Us to Estimate the Contribution of Flow and Geometric Factors to the

Metastatic Distribution

(A) Example of 30 simulated cancer cell trajectories released from the pancreas.

(B) A color representation of thematrix , quantifying the fraction of simulated cell trajectories released from primary tumor

P reaching the target organ O.
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scope of earlier simplified models of blood circulation (Scott et al., 2014; Poleszczuk et al., 2016) by a more

accurate simulation of the circulatory system. We have restricted our analysis to a set of target organs for

which data were available, but our strategy is very general. Detailed statistical data on the precise locali-

zation of metastasis are unfortunately not always available. For instance, metastasis to bone and skin are

usually recorded without providing information on where they occur.

In conclusion, our computational humanoid model of CTC dynamics allows simulation of the metastatic

spread in a realistic geometry, including adhesion mechanisms, and can thus provide guidance for preci-

sion medicine to fight metastasis. In this context, experimental recordings of blood flow profiles by

contrast-enhanced computed tomography or MRI might be used to identify future sites of metastasis

that could be exploited for diagnostics and following them during treatment. Our model could also be

expanded along different directions. For example, we could follow the trajectories of other relevant bodies

through the circulation systems, such as atherosclerotic plaques or drug carriers.

Limitations of the Study

In this study we only considered blood circulation and not the lymphatic system. Therefore, we cannot

describe the contribution of metastasis spreading through the lymphatic system. This might be impor-

tant for tumors like melanoma. Further limitations are due to the approximations employed to simulate

circulation in the veins where we did not consider valves. At the level of this study, it is not a critical

limitation.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

All the simulations are performed with a custom-made Python code. A concise illustration of the algorithm,

including a flowchart for the simulation of CTC trajectories, is reported in Figure S4. The simulations code,

Figure 3. Distribution of Metastasis from Autopsies Correlates with Cancer Cell Dissemination Patterns Obtained from the Model

Cross-correlation analysis of the fraction of patients fp with primary tumor P and metastasis found in a distant organ O and the corresponding fraction of

simulated cell trajectories fc released from primary tumor P reaching the target organ O. Each plot corresponds to metastasis originating from a single

cancer: (A) lung, (B) colorectal, (C) prostate, (D) pancreatic, (E) esophageal and gastric, (F) kidney, and (G) liver cancer. The fraction of patients fp is obtained

from different studies, as reported in the legend. Error bars are standard errors estimated using a binomial model and the sample size of each study, see

methods for details. Error bars are standard errors estimated using a binomial model and the sample size of each study, see methods for details.
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the circulation network, and all the data extracted from the literature and used to produce results and fig-

ures presented in this paper are available at https://github.com/ComplexityBiosystems/CTC-model.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101073.
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Figure 4. Observed Variations in Metastatic Spread from a Primary Tumor Is Explained Both by ‘‘Seed and Soil’’

and Flow/Geometrical Mechanisms in a Tumor-Dependent Manner

(A) Effects due to geometry and flow are found to affect considerably the observed variations in the metastatic sites

reached by primary tumors. The extent of the flow contribution depends on the primary tumor and is the largest in lung

cancer.

(B) The observed variations in primary tumors contributing to metastasis on a given organ is found instead to depend

mostly on ‘‘seed and soil’’ mechanisms.
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Bubendorf, L., Schöpfer, A., Wagner, U., Sauter,
G., Moch, H.,Willi, N., Gasser, T.C., andMihatsch,
M.J. (2000). Metastatic patterns of prostate
cancer: an autopsy study of 1,589 patients. Hum.
Pathol. 31, 578–583.

Budczies, J., von Winterfeld, M., Klauschen, F.,
Bockmayr, M., Lennerz, J.K., Denkert, C., Wolf, T.,
Warth, A., Dietel, M., Anagnostopoulos, I., et al.
(2015). The landscape of metastatic progression
patterns across major human cancers.
Oncotarget 6, 570–583.

Chambers, A.F., Groom, A.C., and MacDonald,
I.C. (2002). Dissemination and growth of cancer
cells in metastatic sites. Nat. Rev. Cancer 2,
563–572.

Chen, L., Blumm, N., Christakis, N., Barabasi, A.,
and Deisboeck, T.S. (2009). Cancer metastasis
networks and the prediction of progression
patterns. Br. J. Cancer 101, 749.

Disibio, G., and French, S.W. (2008). Metastatic
patterns of cancers: results from a large autopsy
study. Arch. Pathol. Lab Med. 132, 931–939.

Ewing, J. (1919). Neoplastic Diseases (WB
Saunders Company).

Fidler, I.J. (2003). The pathogenesis of cancer
metastasis: the ’seed and soil’ hypothesis
revisited. Nat. Rev. Cancer 3, 453–458.

Fokas, E., Engenhart-Cabillic, R., Daniilidis, K.,
Rose, F., and An, H.-X. (2007). Metastasis: the
seed and soil theory gains identity. Cancer
Metastasis Rev. 26, 705–715.

Guyton, A.C., and Hall, J.E. (1986). Textbook of
Medical Physiology, Vol. 548 (Saunders),
pp. 157–166.

Huang, G.P., Yu, H., Yang, Z., Schwieterman, R.,
and Ludwig, B. (2018). 1D simulation of blood
flow characteristics in the circle of willis using
THINkS. Comput. Methods Biomech. Biomed.
Engin. 21, 389–397.

Mitsuhashi, N., Fujieda, K., Tamura, T.,
Kawamoto, S., Takagi, T., and Okubo, K. (2009).
BodyParts3D: 3D structure database for
anatomical concepts. Nucleic Acids Res. 37,
D782–D785.

Müller, L.O., and Toro, E.F. (2014). A global
multiscale mathematical model for the human
circulation with emphasis on the venous system.
Int. J. Numer. Method Biomed. Eng. 30, 681–725.

Paget, S. (1889). The distribution of secondary
growths in cancer of the breast. Lancet 133,
571–573.

Poleszczuk, J.T., Luddy, K.A., Prokopiou, S.,
Robertson-Tessi, M., Moros, E.G., Fishman, M.,
Djeu, J.Y., Finkelstein, S.E., and Enderling, H.
(2016). Abscopal benefits of localized
radiotherapy depend on activated t-cell
trafficking and distribution between metastatic
lesions. Cancer Res. 76, 1009–1018.

Qiu, M., Hu, J., Yang, D., Cosgrove, D.P., and Xu,
R. (2015). Pattern of distant metastases in
colorectal cancer: a seer based study. Oncotarget
6, 38658.

Quarteroni, A. (2006). What Mathematics Can Do
For the Simulation of Blood Circulation (MOX
Report).
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Transparent Methods

Anatomical data

To build an accurate network representation of arterial and venous circulatory sys-
tems, we use data from the Anatomography project, using its underlying dataset, Body-
Parts3D (Mitsuhashi et al., 2009), a set of 2234 mesh files covering a full 3D whole-body
model obtained from 2mm interval magnetic resonance imaging (MRI) images of a male
subject. Each mesh file is associated with terms from the Foundation Model of Anatomy
(FMA), a domain ontology of anatomical knowledge. Using FMA terms, we are able to
locate 639 mesh files corresponding to the arterial circulatory system (keywords: artery,
arteries, arterial, aorta) and 395 mesh files corresponding to the venous circulatory sys-
tem (keywords: vein, veins, venous, cava). We subdivide each mesh into its connected
components, obtaining 1319 meshes, and remove 53 duplicated meshes. In summary, we
retrieve a total of 1266 mesh files from the BodyParts3D dataset that cover the full cir-
culatory system. We also locate 16 meshes that correspond to the following body organs:
brain, large intestine, small intestine, left lung, right lung, pancreas, stomach, heart, left
kidney, right kidney, liver, prostate, gallbladder, urinary bladder, left adrenal gland and
right adrenal gland.

3D mesh to graph conversion

In order to transform a mesh into a graph (see Fig. 1a), we use Elastic Principal
Graph (ElPiGraph) (Albergante et al., 2018), a manifold learning algorithm originaly
designed to infer branching trajectories in single-cell datasets. Specificaly, we sample
5000 points uniformly across the surface of the mesh and feed those to ElPiGraph. We
manually verify that the obtained graph corresponds to the correct topological structure
of the mesh. In cases of meshes with complicated geometry, however, ElPiGraph fails to
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obtain the correct graph. To tackle those cases, we split the mesh into two pieces using the
sign of its first principal component, obtaining two submeshes with simpler geometry.
We iterate this process until all submeshes can be correctly transformed into a graph
using ElPiGraph, and reconstruct the graph of the original mesh by joining the obtained
graphs along the planes that where used to split the mesh. In addition, we measure the
radius of the vessel at each edge by fitting the smallest possible circumference centered
at the middle point of the edge. In summary, for each 3D-mesh we obtain a graph whose
nodes have an associated position and whose edges have an associated radius.

Construction of the full-body graph

We merge the 1266 graphs obtained from BodyParts3D mesh files to obtain a single
full-body graph composed of 23285 nodes and 23804 edges. The details of the graph-
merging process are as follows: first, we automatically join graphs whose associated
meshes have non-null intersection throught their closest nodes. Then, we manually verify
them by visualizing their associated meshes, making sure they correspond to anatomically
connected vessels and removing the connection when that is not the case. While for small
vessels in some cases it is difficult to assert if two graphs should be connected or not,
we take special care when dealing with major arteries and veins, and have verified that
the main known circulatory paths are correctly assembled in the final whole-body graph.
Finally, we add nodes representing the body organs for which a mesh file is available,
and connect them to nodes that verify one of the two following conditions: (1) they are
inside the mesh of the organ, or (2) they are at a distance of less than 10mm from the
organ. The distance between an organ and a node is computed as the shortest distance
between the node and any vertex of the mesh of the organ. The BodyParts3D mesh
files are incomplete, particularly for the head section which lacks all the venous system
and parts of the common carotid arteries, connecting the head to the neck. We thus
reconnect the left and right common carotid arteries to the corresponding internal and
external carotid arteries. It is less straightforward to replace the missing veins, but we
can not disregard completely the veins in the head because this would lead to incorrect
global flow patterns. We solve this problem by adding a set of effective head vessels,
tuning their flow resistance so that systemic circulation is accurately reproduced.

Solution to hemodynamic flow equations

We assume that blood is a Newtonian fluid of constant viscosity and that vessels
are essentially non-deformable, which is a good approximation for large and medium
size vessels (Quarteroni, 2006). Pressure changes due to the systole and diastole periods
during a full cardiac cycles are not included in the model. We assume a constant mean
arterial pressure of 100 mmHg for the main ciruclatory system and 14 mmHg for the
pulmonary circulatory system. This approximation is justified since the cardiac cycle
occurs in a timescale of the order of seconds, while we are interested in metastatic patterns
of CTCs, happening in the course of much larger timescales. Furthermore, given that
the dynamics of our simulated cancer cell trajectories depend on ratios of blood flow
rates, and not on their absolute values, the fraction of cells measured in simulations is
effectively independent of the pressure and viscosity values. Finally, to account for the
effect of the vessels not included in the original mesh data, we add resistive elements
at the arterial-to-venous connections. We use the Powell method as implemented in the
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scientific python library scipy (Jones et al., 2001) and data from (Williams and Leggett,
1989) to adjust the effective resistance of these connections, guaranteeing a realistic blood
flow distribution, as shown in Fig. 1.

Under those assumptions, we consider a system of hemodynamic flow equations on
a network of N nodes, divided into B leaf nodes and N − B internal nodes. Our setup
considers (i) flow conservation for all internal nodes and (ii) the Hagen-Poiseuille equation
for all edges. For a given edge (i, j), the Hagen-Poiseuille equation reads:

Jij =
π∆pijR

4
ij

8ηLij
(1)

where Jij stands for the flow rate along edge (i, j), Rij is the measured radius of the
edge, Lij its length and η the viscosity of the fluid, which we assume constant. The
pressure difference ∆pij is simply

∆pij = pj − pi (2)

with pi, pj the pressure at nodes i and j. We impose blood flow conservation for all
internal nodes i, ∑

j

Jij = 0, i = 1 . . . N −B (3)

and set boundary conditions for the pressure of the remaining B leaf nodes, which cor-
respond to connections to/from the heart. Combining these three equations we obtain a
linear system of equations,∑

j

π(pj − pi)R4
ij

8ηLij
= 0, i = 1 . . . N, (4)

Given that the values of Rij and Lij are known, and that the pressure of B nodes is fixed
by boundary conditions, we are left with N −B variables and N −B linear constraints.
The topology of the network ensures that the system has a solution, which we find using
the sparse.linalg.sparse inv function from the scientific python library scipy (Jones et al.,
2001). Finally, we calculate the flux along the edges Jij by inserting the obtained pressure
values pi into Eq. (1). We solve the system separately for the main circulatory system
and the pulmonary circulatory system to allow for realistic different pressure differences
on each system when setting boundary conditions. In simulating venous circulation, we
do not consider the presence of valves.

Simulation of cancer cell trajectories

We simulate cancer cell trajectories assuming that cancer cells follow the blood flow.
To simulate metastasis stemming from a given primary tumor, cells are initially released
from random nodes belonging to the relevant body organ. At branching points, cells
choose which branch to take with probabilities proportional to the blood flow of each
branch. That is, given a node i with j = 1 . . . ki outgoing edges, the probability for a
cancer cell to choose edge j is given by

Pi→j =
Jij∑
j Jij

(5)
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where Jij is the blood flux along edge (i, j). Cell trajectories start from nodes that are
closer than 10 mm from a given organ and follow the blood flow as described. We also
assume that cells can enter into capillary beds with rate ε only if found at a distance
less than δ from the wall, while they can not enter otherwise (see Fig. 1). When cells
reach the outlet of an artery and do not attach to the capillary bed, they are re-inserted
in the nearest node in venous system. For a short vessel segment, blood flow can be
approximated by the equations of laminar flow in a tube (Glaser, 1999). In this case, the
velocity profile v(r) in a tube of radius R and length L is known to be of parabolic type,

v(r) =
∆p

4Lν
(R2 − r2), (6)

We use this expression to compute the probability Pwall that a cell flowing along the
blood stream is at a distance less than δ from the wall of a vessel of radius R:

Pwall =

∫ 2π

0
dθ
∫ R
R−δ dr rv(r)∫ 2π

0
dθ
∫ R

0
dr rv(r)

' 4δ2

R2
(7)

Multiplying then by the rate ε, we obtain an expression for the rate for a cell to enter
into a capillary bed from a vessel of radius R:

Pexit(R) = Pwall · ε =
4δ2ε

R2
(8)

This expression accounts for the possibility that cancer cells enters into a capillary bed
and reflects the fact that when going through large vessels, cells are less likely to be near
the walls and thus less likely to enter into capillaries. The value of ε would in principle
depend on the properties of tumor cells, while the value of δ could be related to the size
of circulating tumor cells and the clusters they form. We do not model these aspects in
this work, since our aim is to disentangle seed-soil versus geometry and flow contributions
to cancer metastasis incidence rates. We thus choose both δ and ε to be constant across
the vascular system.

Cell attachment in capillary beds

Once a CTC enters into a capillary bed, we can estimate the probability of extrava-
sation to seed a new metastasis. To this end, we model capillary beds as binary trees
obeying on Murray’s law (Welter and Rieger, 2010) which states that if a vessel of radius
R splits in two vessels of radii Ra and Rb, then R3 = R3

a + R3
b (Murray, 1926). If the

inlet to the capillary bed has radius R0 and Ra = Rb, after n bifurcations the capillary
radius Rn is given by (Sherman, 1981)

Rn = 2−1/3Rn−1 = · · · = 2−n/3R0, (9)

Furthermore, we assume that the lengths of the vessel are proportional to their radius
Ln = αRn, as suggested by morphometric data Huang et al. (1996). To obtain the
total number of bifurcations N in a capillary bed, we set RN = 3.5µm, based on the
observation that the smallest capillaries have a diameter of 5−10µm Mittal et al. (2005);
Chan et al. (2012). Then using Eq. 9, we obtain

N = 3 log2

(
R0

RN

)
(10)
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We next assume that the attachment probability while traversing a capillary in the tree
is proportional to Eq. 8 multiplied by the time spent in the capillary. Since the flow
after each bifurcation is conserved (i.e. Qn = 2Qn) in a Murray’s tree, the time Tn to
traverse a capillary at generation n is independent of n. Therefore, the probability of
attaching while traversing the n-th generation of the tree is simply given by:

P (n) = C/R2
n (11)

The total probability of attachment while traversing the whole tree can be approximated
as follows:

PATT = 1−
N∏
n=1

(1− P (n)) ' 1− exp

(
−

N∑
n=1

P (n)

)
(12)

where the approximation is valid as long as P (n) is small. Now the sum can be evaluated
explicitly,

N∑
n=1

P (n) =

N∑
n=1

(
C

R2
0

)
22n/3 (13)

=
C

R2
0

N∑
n=1

(
22/3

)n
(14)

=
C

R2
0

22/3
(
22N/3 − 1

)
22/3 − 1

(15)

substituting eq. (10) back and condensing all the prefactors into a single constant C0,
we obtain

N∑
n=1

P (n) =
C0

R2
0

(
R2

0

R2
N

− 1

)
= C0

(
1

R2
N

− 1

R2
0

)
(16)

so that the attachment probability for a tree of inlet radius R0 is approximately given
by

PATT ' 1− exp

(
−C0

(
1

R2
N

− 1

R2
0

))
. (17)

In the simulations, we chose the inlet radii to be R0 = 100µm, except for vessels whose
radius is already smaller that R0 where we use the vessel radius itself. Finally, we set
C0 = 10−2mm2.

Morphometric analysis

We define the number of generations from any vessel segment to the heart as the
number of branching points along the shortest path. The shortest path is computed us-
ing the metric distance along it via the networkx python library. For capillaries, the total
number of generations is computed as the number of generations to the heart plus the
number of generations given in Eq. 10. Fig S1(d) shows the distribution of total num-
ber of generations, whose median value 31.7 is in agreement with known morphometric
measurements (Huang et al., 1996; Mittal et al., 2005).
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Datasets
We collect data on frequency of metastasis among different primary tumors and cor-

responding metastatic sites from 5 large autopsy studies: 1. (Abrams, 1950) Study of
1000 epithelial malignant neoplasm cases, autopsied at Montefiore Hospital, New York,
between 1943 and 1947 (Abrams et al., 1950). We collect the tabulated data of fre-
quency of metastasis among 39 metastatic sites for 167 breast cancer cases, 118 colon
cancer cases, 34 kidney cancer cases, 64 ovary cancer cases, 32 pancreatic cancer cases, 87
rectuom cancer cases and 119 gastric cancer cases. The colorectal data displayed in Fig.
S3 are obtained pulling together colon and rectum cases . 2. (Bubendorf, 2000) Study
of 1589 prostate cancer cases, autopsied at the Institute of Pathology of the University
of Basel between 1967 and 1995, of which 556 reveal hematogeneous metastasis over 17
different metastatic sites (Bubendorf et al., 2000). 3. (diSibio, 2008) Review study of
data from 3827 autopsies performed between 1914 and 1943 at 5 different medical centers
in the state of Massachusetts (Disibio and French, 2008). The study includes data for
41 primary tumors and 30 different metastatic sites. We collect tabulated metastasis
frequency data for 437 rectum cancer cases, 432 breast cancer cases, 418 cervix cancer
cases, 348 gastric cancer cases, 193 prostate cancer cases, 183 bladder cancer cases, 165
tongue cancer cases, 163 lung cancer cases, 129 esophageal cancer cases, 123 colon can-
cer cases, 120 uterus cancer cases, 117 pharynx cancer cases, 109 pancreatic cancer cases
and 28 other primary tumors with less than 100 cases. The colorectal and gastric and
esophageal data displayed in Fig S3 are obtained pulling together colon and rectum cases
and gastric and esophaegeal cases, respectively. 4. (Budczies, 2015) Study of 1008
cancer cases with metastatic solid malignancies autopsied at the Charité Institute of
Pathology, Berlin, between 2000 and 2013 (Budczies et al., 2015). The study comprises
16 different primary tumors and records 20 different metastatic sites. We collect values
for relative frequency of metastasis from the main text in some cases, and infer the rest
from their Figure 3A, for 280 lung cancer cases, 98 esophageal and gastric cancer cases,
89 breast cancer cases, 89 colorectal cancer cases, 78 pancreatic cancer cases, 71 biliary
cancer cases, 48 head and neck cancer cases, 46 kidney cancer cases, 40 neuroendocrine
cancer cases, 33 prostate cancer cases, 32 liver cancer cases and 4 other primary tumors
with less than 30 cases. 5. (Schlageter, 2016) Study of 398 hepatocellular carcinoma
cases autopsied at the Institute of Pathology, Basel, between 1969 and 1983 and between
1988 and 2012 (Schlageter et al., 2016). The study records 11 different metastatic sites.

Computation of corrected r2 values
The regression lines and corresponding r2 values in Fig. 3 are computed in logarithmic

space and taking into account measurement errors in the metastatic frequency data. We
limit ourselves to combinations of primary tumor and metastatic site for which at least
two independent studies are available. To compute regression in logarithmic space, we
consider the standard linear regression equation, ŷ = αx + β with x = log(fc) the
logarithm of the fraction of cells obtained from the circulation model, y = log(fp) the
logarithm of the fraction of patients obtained from the literature and ŷ = α log(fc) + β
the linear regression estimation. After fitting the slope α and intercept β using the
stats.linregress function from from the scientific python library scipy (Jones et al., 2001),
we compute the corrected explained variance ratio r2,

r2 =
S2 − E2

S2 − e2
. (18)
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Notice how this calculation differs from the more usual R2 one in that the denominator
of Eq. (18) has an additional −e2 term that accounts for measurement errors. In this
expression E2, S2 and e2 are defined as follows:

E2 =
1

N

∑
i

(ŷi − yi)2 (19)

S2 =
1

N

∑
i

(yi − ȳ)2 (20)

e2 =
1

N

∑
i

σ2
yi (21)

The logarithmic measurement errors σy are computed from the linear measurement errors
σfp via the error propagation formula,

σy =

∣∣∣∣σfpfp
∣∣∣∣ . (22)

Linear measurement errors are inferred from the number of patients Np of each dataset
assuming a binomial model,

σfp =

√
fp(1− fp)

Np
. (23)

Decomposition of variability of metastasis incidence rate

The values of S2, E2 and e2 are also used in Fig. 4 to decompose the total variability
of metastasis incidence rates S2 into three pieces:

S2 = (S2 − E2)︸ ︷︷ ︸
geom & flow

+ (E2 − e2)︸ ︷︷ ︸
seed & soil

+ (e2)︸︷︷︸
measurement

(24)

Given that our model is based on geometry and flow and does not incorporate any specific
target-organ compatibility factors, these three terms can be interpreted in terms of seed
& soil and geometry & flow hypothesis: S2 − E2 is the variability of the data that the
model can account for, and hence is attributed to the geometry and flow hypothesis;
E2− e2 is the variability of the data that the model cannot account for after taking into
account measurement errors, and is attributed to the seed and soil hypothesis; and e2 is
by definition the measurement error of the data.

Data and code availability

All code and data necessary to reproduce the results and figures of this paper are
available at https://github.com/ComplexityBiosystems/CTC-model. This includes
the circulatory network, python code to simulate CTC trajectories, and the autopsy
data extracted from the literature.
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Bubendorf, L., Schöpfer, A., Wagner, U., Sauter, G., Moch, H., Willi, N., Gasser, T. C., Mihatsch, M. J.,
May 2000. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol
31 (5), 578–83.

Budczies, J., von Winterfeld, M., Klauschen, F., Bockmayr, M., Lennerz, J. K., Denkert, C., Wolf, T.,
Warth, A., Dietel, M., Anagnostopoulos, I., Weichert, W., Wittschieber, D., Stenzinger, A., Jan 2015.
The landscape of metastatic progression patterns across major human cancers. Oncotarget 6 (1),
570–83.

Chan, G., Balaratnasingam, C., Paula, K. Y., Morgan, W. H., McAllister, I. L., Cringle, S. J., Yu, D.-Y.,
2012. Quantitative morphometry of perifoveal capillary networks in the human retina. Investigative
ophthalmology & visual science 53 (9), 5502–5514.

Disibio, G., French, S. W., Jun 2008. Metastatic patterns of cancers: results from a large autopsy study.
Arch Pathol Lab Med 132 (6), 931–9.

Glaser, R., 1999. Biophysics, 1st Edition. Springer-Verlag Berlin Heidelberg.
Huang, W., Yen, R. T., McLaurine, M., Bledsoe, G., Nov 1996. Morphometry of the human pulmonary

vasculature. J Appl Physiol (1985) 81 (5), 2123–33.
Jones, E., Oliphant, T., Peterson, P., et al., 2001. SciPy: Open source scientific tools for Python.

Http://www.scipy.org/.
URL http://www.scipy.org/

Mitsuhashi, N., Fujieda, K., Tamura, T., Kawamoto, S., Takagi, T., Okubo, K., Jan. 2009. BodyParts3D:
3D structure database for anatomical concepts. Nucleic Acids Res. 37 (Database issue), D782–5.

Mittal, N., Zhou, Y., Ung, S., Linares, C., Molloi, S., Kassab, G. S., Aug 2005. A computer reconstruction
of the entire coronary arterial tree based on detailed morphometric data. Ann Biomed Eng 33 (8),
1015–26.

Murray, C. D., 1926. The physiological principle of minimum work: I. the vascular system and the cost
of blood volume. Proceedings of the National Academy of Sciences of the United States of America
12 (3), 207.

Quarteroni, A., 2006. What mathematics can do for the simulation of blood circulation. MOX Report.
Schlageter, M., Quagliata, L., Matter, M., Perrina, V., Tornillo, L., Terracciano, L., 2016. Clinicopatho-

logical features and metastatic pattern of hepatocellular carcinoma: An autopsy study of 398 patients.
Pathobiology 83 (6), 301–7.

Sherman, T. F., 1981. On connecting large vessels to small. the meaning of murray’s law. The Journal
of general physiology 78 (4), 431–453.

Welter, M., Rieger, H., 2010. Physical determinants of vascular network remodeling during tumor growth.
The European Physical Journal E 33 (2), 149–163.

Williams, L. R., Leggett, R. W., Aug. 1989. Reference values for resting blood flow to organs of man.
Clin. Phys. Physiol. Meas. 10 (3), 187–217.

8



Supplemental figures

Figure S1: Morphological details fo the MRI-derived circulatory network model. Related
to Fig. 1. (a) Measured radii as a function of generation number, defined as the number of branching
points from a vessel segment to the heart. The panel shows that vessels further away from the heart tend
to be thinner, as expected. (b) Mean arterial pressure (MAP) obtained solving the blood flow equations,
as a function of the radius of arterial vessels. The pressure at the heart is fixed to 100 mmHg. The
panel shows that in the range 10 to 1 mm, pressure is maintained close to 100 mmHg, displaying only a
mild drop with decreasing radius as expected. For very small vessels of radii below 0.5 mm, we observe
instead is a larger pressure drop. (c) Schematic representation of our modeling of capillary beds using
Murrays law. (d) Distribution of the number of generations from heart to capillaries. Generations are
defined as number of branching points along a shortest path.
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A B C D

Figure S2: Statistics of data from autopsies (First part). Related to Fig. 3. A compilation of
the values of fp — the fraction of patients with a given primary tumor and metastasis found in a distant
organ – obtained from autopsy data reported in the literature for a) pancreatic cancer, b) prostate
cancer, c) liver cancer and d) kidney cancer. Error bars are standard errors estimated using a binomial
model and the sample size of each study, see methods for details.

A B C

Figure S3: Statistics of data from autopsies (Second part). Related to Fig. 3. A compilation of
the values of fp — the fraction of patients with a given primary tumor and metastasis found in a distant
organ – obtained from autopsy data reported in the literature for a) esophageal and gastric cancer, b)
colorectal cancer and c) lung cancer. Error bars are standard errors estimated using a binomial model
and the sample size of each study, see methods for details.
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Full-body graph creation 
Join pairs of graphs (G, H) 
if:  

a. meshes overlap, and 
b. visual verification 

Final graph has 23285 
nodes and 23804 edges.

BodyParts 3D data 
Mesh files from MRI 
imaging of one male 
subject 

a. 639 artery meshes 
b. 395 vein meshes 
c. 16 organ meshes

Quality Control 
Identify and remove 
duplicate meshes using 
high volumetric overlap 
threshold and manual 
verification.  

(53 meshes removed)

Mesh to graph 
conversion 
Graph inference using 
ElPiGraph algorithm. 
Difficult meshes divided 
into sub-meshes to 
facilitate task via first 
principal component.

GRAPH OF CIRCULATORY SYSTEM FROM MRI IMAGING DATA

Solve hemodynamic eqs  
Hagen-Poiseuille equation + 
flow conservation at nodes + 
pressure b. c. (heart: 100 
mmHg, lungs: 14 mmHg). 
Adjust artery-to-vein 
resistances to match known 
organ blood flow values. 

Find organ contact points  
Identified as nodes distancing 
less than 10mm from an organ 
mesh. Used as start/end point 
for trajectory simulation. 

Simulate CTC trajectories 

• Start/end at organs, branch 
choice prob according to 
flow. 

• Enter capillaries possible 
only if close to vessel wall. 

• Model capillary as binary 
tree that follows Murray’s 
law. 

• Launch 104 circulating 
tumor cells starting from 
each organ.

SIMULATION OF CIRCULATING TUMOR CELLS

Enter circ. system 
at organ P

Attach? Close to
organ O?

Traverse vessel

DiscardReach 
junction

Which
branch?

YES YES

NO NO

left right

Exit circ. system 
at organ O

Figure S4: A schematic description of the algorithms used for the simulations. Related to
Fig. 2.
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